
info@apriorit.com

www.apriorit.com

A US-based blockchain development company hired us to implement secure and scalable

cloud infrastructure for their smart contracts. They were looking for experts in blockchain

development and cloud infrastructure that could deliver a high-quality product under strict

deadlines.

We designed, tested, and implemented the AWS architecture and taught the client’s DevOps

team how to support it. Our team managed to do all of this just in time for the client to present

the project to their customers — banking and government organizations.

Case study

Building AWS-based Blockchain

Infrastructure for International Banking

The сlient
Our client is a US-based blockchain development company that provides their customers with

smart contracts, custom blockchain networks, and tools to help them build a decentralized

economy.

mailto:%20info%40apriorit.com?subject=
http://www.apriorit.com

Being blockchain experts themselves, they developed several smart contracts for their new

project. However, to create cloud infrastructure for these smart contracts, they required

specific expertise. That’s why the client was looking for an experienced contractor.

The сhallenge
The client was looking for a blockchain development team that could set up AWS infrastructure

for further deployment of their smart contracts. The cloud infrastructure had to be configured

with Terraform, Ansible, and the ELK stack because these technologies were used by the

client’s previous contractor. Our team also had a limited time to implement the infrastructure.

The client had specific requirements for infrastructure scalability, flexibility, and security

because they designed the project for international banks and government organizations.

They needed the solution up and running by a certain date to be able to present it to their

customers, so we had to finish the project on schedule.

Another challenge of this project was the lack of documentation. The client developed smart

contracts in cooperation with a third-party contractor, but we couldn’t consult with this

contractor on their code.

info@apriorit.com www.apriorit.com

Our approach

After analyzing the code and the project’s high-level architecture, we put together a team

of senior blockchain developers and a DevOps engineer. Our team assessed the project’s

requirements and current state, then offered to use the most suitable technology stack for

developing the infrastructure:

mailto:%20info%40apriorit.com?subject=
http://www.apriorit.com

info@apriorit.com www.apriorit.com

To make sure we delivered exactly the solution the client needed before the deadline, we

initiated regular meetings with the client’s team via video calls and messengers. This way, we

could coordinate our efforts and use our time efficiently.

The result

Our team designed and implemented AWS infrastructure that satisfied the client’s

requirements and met the project deadlines. As a result, the client was able to deploy custom

smart contracts and conduct a project demo for their customers.

In particular, our team:

• Designed and implemented AWS-based infrastructure

• Added pipelines for solution support and future improvements

• Restored and improved project documentation

• Consulted the client’s DevOps team

mailto:%20info%40apriorit.com?subject=
http://www.apriorit.com

info@apriorit.com www.apriorit.com

How we did it

To deliver an efficient product and meet the client’s deadlines, we carefully planned our work

on the project and outlined the following six stages:

1. Design AWS infrastructure

At the beginning of the project, the client provided us with the documentation they had for their

smart contracts and a high-level overview of the infrastructure they needed. We analyzed this

information and proposed an AWS-based infrastructure design that would be maintainable,

scalable, and fault-tolerant enough for the client’s needs.

The client developed smart contracts together with a third party that didn’t provide full

documentation for their code. Our team couldn’t consult with this third party to figure out the

missing parts, so we requested the code for smart contracts and analyzed it.

Analyzing code takes more time than studying documentation, but it allowed us to:

• Determine exactly how the code works

• Design infrastructure that perfectly fits the smart contracts

• Save time on future rework and infrastructure improvements

Once the architecture design was finished and approved, we started its implementation.

mailto:%20info%40apriorit.com?subject=
http://www.apriorit.com

info@apriorit.com www.apriorit.com

2. Implement AWS infrastructure

When working on project infrastructure, we used the following AWS tools:

• S3

• EC2

• DynamoDB

• Virtual Private Cloud

• Elastic Container Service

• and others

The infrastructure included three environments: development, testing, and production.

The client also asked us to get their DevOps engineers acquainted with the infrastructure. To

do that, we organized several calls and demonstrated how the infrastructure works and how

the client could interact with it.

3. Deploy smart contracts

Next, our team started preparing for smart contract deployment, configuring the environments

and scripts for testing and deployment. To help the client test the contracts in a secure and

controllable manner, we added Docker containers to the infrastructure.

When deploying smart contracts in the testing environment, we paid special attention to their

security. Once the client had finished their QA activities, our team deployed and initialized the

smart contracts in the main AWS environment.

4. Design the CI/CD pipeline

Adding a continuous implementation and continuous deployment (CI/CD) pipeline to the

infrastructure helped us simplify and automate maintenance activities. For example, this

pipeline automatically uploaded all changes and new commits to AWS and eliminated the need

to manually deploy new code.

mailto:%20info%40apriorit.com?subject=
http://www.apriorit.com

info@apriorit.com www.apriorit.com

5. Prepare internal infrastructure

At the final stages of the project, we needed to finish the AWS infrastructure configurations and

set up all internal tools. The client had tried to configure the internal infrastructure before they

started working with us. But the mechanisms they used were outdated and did not fit the new

infrastructure, so our team started from scratch.

During this stage, our team managed to:

• Configure automated log collection and analysis

• Add new dashboards

• Configure ways for solution components to communicate with each other

These activities helped the client monitor the solution’s performance and discover issues and

improvement opportunities.

6. Consult the client’s DevOps team

Once the infrastructure was working according to the client’s requirements, we started

transferring management of it to the client’s DevOps team. However, they lacked experience

supporting such infrastructure and working with some of the tools we used.

To help the client’s DevOps engineers, our team prepared detailed documentation and

descriptions of infrastructure mechanisms and answered all their questions.

The impact

The client got efficient, scalable, and secure AWS infrastructure for the project within strict

deadlines. They also received some improvements, as a part of the project developed earlier

by a third party was enhanced by the Apriorit team.

Apart from that, the client’s DevOps engineers leveraged our expertise and received extensive

consultations on how to support the system and implement further improvements.

As a result, the client was able to conduct a project demo for several international banks and

government organizations. They also have the knowledge and tools to manage the solution

according to their needs.

mailto:%20info%40apriorit.com?subject=
http://www.apriorit.com

